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Abstract

Bridged 1,6-diphenyl-1,3,5-hexatrienes were prepared from 1-indanone by successive Robinson annula-
tion and McMurry coupling reaction. Rigidi®cation produces a decrease in oxidation potential and
HOMO-LUMO gap, and a considerable enhancement of ¯uorescence quantum yield compared to the
open-chain analog. # 2000 Elsevier Science Ltd. All rights reserved.
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Linear p-conjugated systems (LCSs) are subject to a considerable interest related to their use as
conjugating spacers in chromophores for nonlinear optics,1 as active materials in organic ®eld
e�ect transistors2 or in organic light emitting diodes.3 Each of these applications requires speci®c
properties such as optimal p-delocalization, low ionization potential, high electron a�nity and
controlled absorption and emission spectra. Since these properties are related to the HOMO and
LUMO levels and to their energy di�erence, the control of the HOMO-LUMO gap (�E) appears
as a key issue for the construction of LCS speci®cally tailored for a given application.4

We have already shown that covalent bridging of thiophene based-LCSs allows a signi®cant
reduction of �E.5aÿe In particular, rigidi®cation of 1,6-dithienyl-1,3,5-hexatriene 1, produces an
enhancement of the p-delocalization accompanied by a considerable increase of the photo-
luminescence quantum yield and thermal stability (Scheme 1).5f,g As a further step we report here
an extension of this approach to the case of the benzenic analog of 1 namely 1,6-diphenyl-1,3,5-
hexatriene 2.
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A Robinson annulation6 reaction using commercially available 1-indanone 4 and methylvinyl
ketone (MVK) in the presence of KOH as base in re¯uxing anhydrous MeOH for 18 h led to a
mixture of several products (Scheme 2). Column chromatography on silica gel (eluent:CH2Cl2/
EtOAc 8:2) allowed to separate unreacted starting material 4, and a fraction containing a mixture
of inseparable compounds 5 and 6 resulting from mono and double Robinson annulations. The
composition of this mixture was determined by both 1H NMR and mass spectrometry. A third
and main fraction corresponding to the alcohol 7 (25%) was recovered as a mixture of two couples
of diastereomers in the 85:15 ratio as estimated by 1H NMR. These compounds result from a
double Robinson annulation5g which implies a deprotonation process at the carbon in g position
to the ketone functionality of compound 5. Further dehydration reaction to give compound 8 was
carried out either in re¯uxing toluene for 1 h in the presence of H2SO4 or in 85% H3PO4 at 100

�C
for 10 h.

A McMurry reaction7 on ketone 8 using TiCl4/Zn in re¯uxing anhydrous THF for 2 h gave the
title compound 2 in 56% yield after column chromatography on silica gel (eluent petroleum
ether/CH2Cl2, 9:1). The existence of two methylene bridgeheads in 2 associated with the possibility
of E and Z con®gurations for the central carbon±carbon double bond could lead to the presence

Scheme 1.

Scheme 2.
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of four separable isomers. Indeed, an additional preparative thick layer chromatography allowed
the separation of two fractions F1 (20%) and F2 (30%), each of them corresponding to only one
diastereomer, as con®rmed by 1H and 13C NMR.8 The electronic absorption spectra of F1 and
F2 in 95% EtOH reveals a red shift of the wavelength of the 0±0 absorption band (l0ÿ0) from 391
to 398 nm indicative of a larger conjugation for F1 characteristic of an E con®guration. In addition,
based on previous UV±visible and X-ray data in the thiophene serie,5f,g F1 and F2 can be
assigned to the E-2 and Z-2 isomers, respectively.
In order to examine the in¯uence of the rigidi®cation in compounds E-2 and Z-2, the reference

compound 39 has been prepared by a twofold Wittig reaction between benzaldehyde and (E)-but-
2-ene-1,4-diylbis(tributylphosphonium)dichloride (Scheme 3).10 The all-trans con®guration of
compound 3 was con®rmed by the 1H NMR spectrum in CDCl3 which shows a proton spin-
coupling constant of 15.4 Hz for the protons of the external carbon±carbon double bonds.
The optical and electrochemical data of compounds 2 and 3 are collected in Table 1. The

electronic absorption spectra of E-2, Z-2 and 3 show a well-resolved vibronic ®ne structure
characteristic of a rigid structure. Furthermore, the covalent bridging in E-2 and Z-2 induces a
red shift of l0ÿ0 of 28 and 21 nm, respectively, compared to the reference compound 3, indicating
an enhancement of p-electron delocalization.

The electrochemical behavior of E-2, Z-2 and 3 was investigated by cyclic voltammetry (CV).
While compound 3 shows an irreversible one electron oxidation with an anodic current peak Epa1
at 1.16 V corresponding to the generation of the cation-radical, the CV of compounds E-2 and
Z-2 shows a ®rst reversible oxidation with Epa1=0.87 V and 0.89 V, respectively, followed by a
quasi reversible wave corresponding to the formation of the dication and peaking at 1.17 V and
1.18 V, respectively (Fig. 1). These results con®rm that, as already observed for 1,5f,g rigidi®cation
of the conjugated system of 3 raises the energy level of the HOMO, which is consistent with the
reduction of the �E indicated by optical data.

Scheme 3.

Table 1

Optical and cyclic voltammetry data
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The ¯uorescence emission spectra of E-2, Z-2 and 3 correspond to the mirror image of their
absorption spectra and show a well-resolved vibronic ®ne structure re¯ecting the rigid structure
of the excited state. The emission maximum occurs at ca. 430 nm which corresponds to a blue
light emission. Furthermore, comparison of the ¯uorescence intensity measured under identical
conditions shows that rigidi®cation of 3 produces a threefold increase of the emission quantum
yield which reaches a value of 0.64 for E-2 (Fig. 2).

To summarize, the covalent bridging of 1,6-diphenyl-1,3,5-hexatriene leads to a signi®cant
decrease of the HOMO-LUMO gap due to an increase of the HOMO level, associated with a
considerable enhancement of the ¯uorescence e�ciency. Although the bridged compounds E-2
and Z-2 (mp >250�C) display higher melting points than reference 3 (198±200�C), further DSC
experiments should con®rm the better thermal stability of bridged structures as observed in the
thiophene series.5f,g

Figure 1. Cyclic voltammograms of E-2 and 3 (see Table 1 for conditions)

Figure 2. Relative ¯uorescence emission spectra of E-2 and 3 in 95% EtOH
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